ゼロエミッション船の開発構想

船舶

 国際海事機関 (IMO)は、2050年までにGHG総排出量を、2008年比で50%以上削減し、今世紀のできるだけ早い段階で排出量ゼロを目指す目標などを掲げた。
 これにより、船舶のゼロ・エミッション化に向け、①バイオ燃料の他に水素、アンモニア、合成メタンなどの新たな次世代船舶燃料の使用と、②新たなエンジンの開発、③蓄電池を搭載した電気推進システムの開発、④再生可能エネルギー(風力、太陽光)の援用などの検討が始まっている。

ゼロエミッション船とは?

 2018年4月、国際海運における温室効果ガス(GHG)を削減するため、国際海事機関 (IMO)は削減目標や対策をまとめた「GHG削減戦略」を示した。すなわち、2050年までにGHG総排出量を、2008年比で50%以上削減し、今世紀のできるだけ早い段階で排出量ゼロを目指す目標などを掲げた。

 その結果、世界的に船舶のゼロ・エミッション化に向けて、①バイオ燃料の他に水素、アンモニア、合成メタンなどの新たな次世代船舶燃料の使用と、②新たなエンジンの開発、③蓄電池を搭載した電気推進システムの開発、④再生可能エネルギー(風力、太陽光)の援用などの検討が始められている。

 日本でも、2018年8月に「国際海運GHGゼロエミッションプロジェクト」が立ち上げられ、2020年3月にロードマップが策定された。2028 年までに対 2008 年比で 90%程度以上の効率改善が期待でき、長期的には国際海運のゼロエミッション化の実現を可能とする技術の絞り込みが行われた。

 2021年12月、国土交通省はコンテナ船など国際海運に携わる船舶が排出するGHGを、2050年までに実質ゼロにする新目標をIMOに提出した。日本の領海・排他的経済水域(EEZ)は約447万km2あり、世界第6位の海洋国家として国際海運におけるGHG削減の積極的な推進と貢献を目指している。

 このロードマップで示されたゼロエミッション船は、図1に示す①水素燃料船②アンモニア燃料船③船上CO2回収システム搭載船④低速液化天然ガス(LNG:Liquefied Natural Gas)+風力推進船の4タイプであり、現在は建造に必要な技術開発が進められている。

図1 ゼロエミッション船 出典:日本船舶技術研究協会

水素燃料船とアンモニア燃料船

 水素燃料船とアンモニア燃料船は、使用時にCO2を排出しないクリーンなエネルギーで航行する船舶である。水素・アンモニア燃料の拡大シナリオが、図2(a)(b)のように示されている。

 図2(a)のグラフ上端の点線は、対応策を講じなかった場合のGHG排出量(BAU:Business as usual排出量)である。ただし、縦軸にはCO2換算された排出量が示されている。下端の実線は諸対策により2050年ゼロエミッションの目標を達成するCO2排出量の推移を示す。

 省エネ技術と運航効率化によるCO2排出量の削減に加えて、水素・アンモニア燃料が十分に供給されると仮定したシナリオであり、水素・アンモニアへの期待度の高さがわかる。水素とアンモニアにはそれぞれ異なる利点と課題があり、現時点でいずれが優位であるかの判断は難しいとしている。

図2 水素・アンモニア燃料拡大シナリオ  (a) GHG排出量・削減量の推移

 また、図2(b)にはエネルギー消費量に占める各燃料などの割合を示している。本シナリオにおいては、先行してLNG 燃料の使用が拡大すると仮定しており、次に示す合成燃料やバイオ燃料(カーボンリサイクルメタン・バイオメタン)とともに、CO2排出量の削減が見込まれている。

図2 水素・アンモニア燃料拡大シナリオ (b)エネルギー消費に占める各燃料などの割合

船上CO2回収システム搭載船

 船上CO2回収システム搭載船は、陸上で実用化されたCO2回収装置を搭載してCO2排出量ゼロを目指す。将来的には回収したCO2を原料とするカーボンリサイクル燃料の導入で、ゼロエミッション化を目指す。LNG→カーボンリサイクルメタン移行シナリオが、図3(a)(b)に示されている。

 図3(a)のように、省エネ技術および運航効率化によるCO2排出量の削減に加えて、カーボンリサイクルメタン・バイオ燃料が十分に供給されると仮定したシナリオである。カーボンリサイクルメタン燃料とバイオ燃料は、いずれもカーボンフリー燃料である。

図3 LNG→カーボンリサイクルメタン移行シナリオ (a)GHG排出量・削減量の推移

 LNG 燃料がCO2 削減に及ぼす割合は大きくないが、図3(b)で示すように国際海運のエネルギー消費に占める割合は大きい。これはLNGの単位熱量あたりのCO2排出量が、対C重油比で0.74 と比較的多いことに起因する。
 LNG燃料を使用することによるCO2削減効果は限定的であるが、LNG燃料の普及が2025 年以降のカーボンリサイクルメタン・バイオメタン燃料の導入の土台になると考えられている。

 2050年以降においても主力のガス燃料として期待されるLNG・カーボンリサイクルメタン技術に関しては、未燃のままメタンが大気中に排気される「メタンスリップ」の問題がある。メタンはCO2に比べて25倍の温室効果があるため、メタンを排ガスから除去する技術の開発が必須とされている。

図3 LNG→カーボンリサイクルメタン移行シナリオ (b)エネルギー消費に占める各燃料等の割合

低速液化天然ガス+風力推進船

 低速液化天然ガス+風力推進船は、現在主流である船舶用重油に代えてLNG燃料を採用し、再生可能エネルギーである風力推進などの技術を組み合わせてCO2排出量の削減率を高める狙いである。

 図4には、「国際海運GHGゼロエミッションプロジェクト」での検討結果を示す。緑色は 2028 年までに実用化可能、黄色は技術開発課題が比較的小さく 2028 年までに実用化の可能性があるとしている。これらの検討結果を基に、図1の4タイプのゼロエミッション船の開発構想が示されたのである。

図4 国際海運のゼロエミッション船

ゼロエミッション船の実現ロードマップ

 ゼロエミッション船を実現するためのロードマップが、図5に示されている。2050 年目標達成に向けて、2028~2030 年の期間を、対 2008年比で90~100%の効率改善を達成するゼロエミッション船の投入開始時期としている。
 これに向けて、研究開発、技術の実証及び導入促進を順次進めるとともに、ゼロエミッション船の建造・運航のための環境整備として、関連ルールの検証・策定・改正も並行して進める必要がある。

 2030 年以降は、ゼロエミッション船の普及フェーズとなることを想定しているが、代替燃料の普及促進のためには、陸上における燃料供給体制の整備が必要としている。

図5 国際海運のゼロエミッションに向けたロードマップ

 2022年7月、国土交通省はゼロエミッション船の技術開発に10年間で総額350億円を財政支援すると発表した。アンモニア燃料船は2026年、水素燃料船は2027年からの実証運航を計画し、アンモニア燃料船は2028年までに、水素燃料船は2030年以降の商業運航を目指す。
 ゼロエミッション船の開発や導入にあたり、造船や海運各社は長期の低利融資が受けられる。

 国土交通省や日本船主協会によると、ゼロエミッション船を年間100隻ほど建造する場合、建造費用は1隻あたり約100億円と想定する。年平均で約1兆円かかる計算で、関連コストも含めた2025~2050年の総投資額は25兆~30兆円になると推計されている。

コメント

タイトルとURLをコピーしました