何故、急速に高まる核融合熱!(Ⅷ)

原子力

 核融合スタートアップ各社の開発動向についてレビューを続ける。最近になって急速に注目度が上がっている米国のHelion Energy(ヘリオン・エナジー)と、Commonwealth Fusion Systems(CFS、コモンウェルス・フュージョン・システムズ)をレビューする。

米国Helion Energy(ヘリオン・エナジー)

 2013年に設立された米国Helion Energyは、2022年8月末の段階で合計5.8億ドルの資金調達を達成し、プロトタイプを6基製造してきた。現在7基目のプロトタイプ「Polaris」を建設中で、2024年に発電能力の実証、2028年までに核融合発電所を稼働し、その後1年間で出力を50MWe以上に高める。
 その後、2031年以降に量産商用機「Betelgeuse」(出力:500MWe)を計画している。

 2021年6月には、6基目のプロトタイプ「Trenta」で、民間企業として世界で初めて核融合想定の実験炉(DーD反応)で1億℃を達成した。ただし、核融合反応は10分に1度の頻度のパルス発生であり、「Polaris」では、より高頻度での核融合反応の発生を目指す。

 2023年5月、米国IT大手のMicrosoft(マイクロソフト)とは、2028年から4万世帯分の電力に相当する50MWの電力購入契約を締結した。売電契約を交わしたことで、開発に失敗すればHelion EnergyはMicrosoftに対してペナルティー(違約金)を支払うことになる。

2023年9月、米国の鉄鋼大手ニューコアは3500万ドルを出資し、出力:50万キkWの核融合発電プラントを2030年にも同社の電炉に導入すると発表した。
 ニューコアは、軽水炉型の小型原発「SMR」の活用も模索しており、2023年5月には米国ニュースケール・パワーの小型原発の導入を検討すると発表している。

 Helion Energyが進めるのはFRC型プラズマ方式核融合で、TAE Technologiesと同系列の技術である。しかし、中性子を出さないための核融合反応にTAE Technologiesはpー11Bを採用するが、Helion Energy量産商用機「Betelgeuse」でDー3He反応を計画している。
 燃料のヘリウム3(3He)は、プロトタイプ「Trenta」のD-D反応(D+D→T+p+3He+n )で得られることを検証しているが、放射性のトリチウム(T)や中性子が出るため管理・遮蔽が必要となる。

 原料を装置両端のFRC生成部でプラズマ化した後、プラズマ加速部で約160万km/hに加速し、中央の反応容器で衝突させて核融合反応を断続的に生じさせる。核融合反応で生じたエネルギーの影響で装置内の磁場が変化し、磁場の変化の割合に比例して誘導起電力が発生する。
 ファラデーの電磁誘導の法則に従い、この誘導起電力を取り出すことで、従来の蒸気タービンによる発電に比べて装置のコンパクト化と高効率化が可能と考えられる。

図14 Helion Energyの進めるFRC型プラズマ方式核融合のイメージ 
出典:Helion Energy

米国Commonwealth Fusion Systems(CFS)

 2018年に設立された米国Commonwealth Fusion Systems(CFS、コモンウェルス・フュージョン・システムズ)は、Massachusetts Institute of Technology(MIT)発のスタートアップで、2025年に核融合炉を稼働させ、2030年代初頭に商用機での発電を開始する計画を公表している。

 2022年8月末の段階で合計20億ドルの資金調達を達成し、トカマク型核融合炉に画期的な高温超電導(HTS)コイルを組み合わせ、核融合燃料による実証核融合炉「SPARC」(出力:50~100MWe)を建設中である。2030年代初頭 に核融合発電所 「ARC」(400MWe)の完成を目指す。

 Net energy gainを目指す実証核融合炉「SPARC」(出力:50~100MWe)は、ITERの高さ約30mに対して約3mで、炉の体積は約1/40とコンパクトで、経済性に優れている。このコンパクト化は、高温超電導(HTS)コイルにより実現される。

 トカマク型核融合炉の発電性能は、炉の体積とプラズマを閉じ込める磁場の強さの4乗に比例する。CFSは、低温超電導(LTS)コイルを使用するITERに対して、HTSコイルを使用する「SPARC」の磁場の強さを2倍程度に強くできれば、ITERに匹敵する発電性能を得られるとしている

 2021年9月、CFSは高出力の高温超電導(HTS)コイルでプラズマを閉じ込め実験に成功した。すなわち、従来の低温超電導(LTS)コイルの場合の磁場強度は上限が6Tであったが、高温超電導(HTS)コイルを使うことで磁場強度の上限を20Tに上げることに成功した。
 2023年2月、フジクラはCFSにHTSコイル用線材の納入と、将来に向けた生産能力の拡大を発表。 

 線材の長尺化は、超電導層の成膜技術の進歩による。①フジクラはパルスレーザー堆積(PLD)法、②古河電気工業は2011年に買収した米国SuperPowerの有機金属気相成長(MOCVD)法、③SWCC(旧昭和電線Gr)は化学的プロセスを含む有機酸塩塗布熱分解(MOD)法を実用化している。

 MITは2018年にCFSを設立し、SPARC用トロイダル(TF)コイルの試作を開始。HTS線材は約17km長の線材でサブコイルを16個製造し、それらを組み合わせてTFコイルとした。温度20K、磁場強度20テスラの環境下で、40.47kAの大電流を流して超電導状態の維持を確認した。

 また、CFSのブランケットは、FLiBe†(フリーべ)と呼ばれるフッ素系溶融塩(Li2BeF4:フッ化リチウム(LiF)とフッ化ベリリウム(BeF2)の混合物)中に真空容器を丸ごと浸す方式である。
 核融合のエネルギーほぼ全てをFLiBeが受け止め、それを循環させて熱を取り出すことで、ブランケットには高速中性子が届かないため、定期交換の必要はない。

 真空容器は、高速中性子を受ける部位を放射化されにくいタングステン(W)または炭化ケイ素(SiC)の2重構造とし、その隙間を溶融鉛(Pb)で冷却する。Pbは高速中性子が当たると、低速の複数の中性子を放出するため、トリチウム生成のための中性子増倍材として作用する。

 ダイバーターは炉内の不純物を回収して、未反応のトリチウムを取り出して燃料として再利用する。プラズマに直接さらされるため定期交換は免れないが、3Dプリンターでの製作を進めている。

図15 商用機「ARC」(出力:400MWe)のノイメージとHTSマグネット  
出典:Commonwealth Fusion Systems

英国First Lght Fusion(ファースト・ライト・フュージョン)

 2011年に設立された核融合スタートアップのFirst Light Fusionは、オックスフォード大学の核融合スピンアウトで、英国原子力庁(UKAEA)の支援を受け、発射体を燃料に高速で衝突させるシンプルな慣性閉じ込め核融合炉の開発を進めている。
 重水素燃料により電磁ランチャー「Machine 3」2段式超高速ガス銃「Machine BFG」による原理実証を行い、現在は後継機「Machine 4」の設計を進めている。2032年にパイロット・プラントを稼働させ、その後、商用機(出力:60MWe以上)を計画している。

 2022年4月、英国原子力庁(UKAEA)は、First Light Fusionが核融合を達成したことを確認したと発表。「Machine BFG」を使い、重水素燃料を入れた発射体を6.5km/sで特殊なターゲットに向けて発射し、燃料を70km/s以上で爆縮させ、10TPaの圧力に圧縮されてD-D反応を生じた。
 今後、衝撃圧力を20倍以上に高め、爆縮を30sごとに繰返して核融合反応を持続させる計画。

 2023年1月、UKAEAとFirst Light Fusionは、オックスフォードシャーのUKAEAのカルハム・キャンパスに、Net energy gain実証機「Machine 4」を収容する新たな専用施設の設計・建設に関する契約を締結した。投入したエネルギーを上回るエネルギー出力を得ることが期待される。
 「Machine 4」は原理実証機で発電はしないが、将来の慣性閉じ込め核融合エネルギー発電に必要な技術開発に使用される。建設は2024年に開始、2027年に運用が始まる予定である。

図16 Net energy gain実証機「Machine 4」のイメージ  
出典:First Light Fusion

コメント

タイトルとURLをコピーしました