何故、急速に高まる核融合熱!(Ⅳ)

原子力

 国内では、量子科学技術研究開発機構によりトカマク型磁気閉じ込め核融合炉(JT-60SA)、自然科学研究機構の核融合科学研究所によりヘリカル型磁気閉じ込め核融合炉(LHD)、大阪大学レーザー科学研究所による大型レーザによる慣性閉じ込め核融合炉(LFS)の3種類の炉型に関して開発が進められている。

日本における核融合開発

 国内では、トカマク型磁気閉じ込め核融合炉、ヘリカル型磁気閉じ込め核融合炉、大型レーザによる慣性閉じ込め核融合炉(レーザ核融合)の3種類の炉型に関して開発が進められている。

図6 日本が開発を進める3形態の核融合  出典:文部科学省

トカマク型磁気閉じ込め核融合実験装置(JT-60SA)

 1985年に日本原子力研究所(JAERI)により運用が始まる「JT-60」は、JAERI Tokamakと計画当初のプラズマ体積60m3に由来して命名された。超高温プラズマ(イオン温度:5.2億℃、電子温度:3億℃)、持続時間:28.6秒、核融合エネルギー増倍率などで、当時の世界最高値を達成した。

 2007年から「JT-60」の改造が始まり、2020年4月にはITERと原型炉のつなぎと位置付けていた「JT-60SA」が完成し、茨城県那珂市で国立研究開発法人量子科学技術研究開発機構(QST:National Institutes for Quantum Science and Technology)により運用が開始された。
 高さ:約16m、幅:約13m、プラズマ体積はJT-60の約2倍の133m3であり、プラズマ密度や物理学的な諸元はITER並みとし、ITERを補完・支援する実験を行うことを目的としている。

 その後、2021年3月に発生したトラブルにより大幅な装置改修が実施され、2023年5月からJT-60SAの統合試験運転を再開した。2023年秋には炉内磁場でプラズマを閉じ込めた状態を実現する「初プラズマ達成」を目指す。JT-60SAでは実際の燃料を使わないため、核融合反応は生じない。

 一方、2016年3月、文部科学省が三菱重工業、東芝、日本原子力研究開発機構(JAEA:Japan Atomic Energy Agency)、核融合科学研究所により、発電運転を考慮した原型炉の設計を開始することを発表した。
 2026年までに炉心の概略設計を終え、2031年までに建設地を選定し、2035年までにコスト評価を含む全体設計を終える計画。2050年をめどに核融合発電ができる国産の実証炉(原型炉)の運転開始を目指している。

図7 トカマク型核融合実験装置JT-60SAの外観と断面モデル 出典:量子科学技術研究開発機構

ヘリカル型磁気閉じ込め核融合実験装置(LHD)

 大学共同利用機関法人自然科学研究機構の核融合科学研究所(NIFS:National Institute for Fusion Science)は、1997年7月に岐阜県土岐市に大型ヘリカル型核融合実験装置(LHD:Large Helical Device)を設置した。
 この日本独自のヘリオトロン磁場配位による超伝導プラズマ閉じ込め実験装置は、長径:3.0m、短径:0.6mのドーナツ形状で、プラズマ体積:30m3である。

 2017年3月から始めた重水素を用いた実験で、13兆個/cm3の中心密度のプラズマ中でイオン温度1.2億℃の達成に成功したと発表。再現実験においても、恒常的にプラズマ温度を1.2億℃まで引き上げられることも確認している。
 また、ヘリオトロン磁場配位により54分と長時間のプラズマ持続や、核融合に必要な条件の10倍以上となる1200兆個/cm3の中心密度を、300万度という低い温度ではあるが達成している。

 ITERなどのトカマク型核融合炉ではプラズマ中に大電流を流し、プラズマ自身も強磁場により自らを拘束する。しかし、安定して電流を維持するのが難しく、プラズマ閉じ込め時間に課題がある。
 一方、ヘリカル型核融合炉は真空容器の外側からかける磁場だけでプラズマを拘束するため、原理的にプラズマの長時間保持が可能である。しかし、超電導コイルの形状が複雑で大型化が難しい。

 2023年2月、米国TAE Technologiesと共同で、放射線リスクのない核融合を世界で初めて実証した。LHDを使い高温プラズマ中で軽水素(プロチウム、pまたは1H)とホウ素11(11B)を核融合させ、生成した高エネルギーヘリウムを検出することで核融合反応を確認した。
 軽水素を1500万km/hに加速してホウ素11に衝突させた。燃料の軽水素とホウ素11は放射性物質ではなく、反応で中性子も生成しないため安全性が高い。高エネルギーヘリウムがアルファ線として生成するが、すぐに無害化するためヘリウムガスとして安全に排気できる。

 多くの核融合では燃料に重水素三重水素が使われているが、核融合反応によりヘリウム中性子が生成される。三重水素(トリチウム)の放射線リスクは低いが、取り扱いに注意が必要であり、中性子も飛距離が長い放射線であり、十分な安全対策が必要である。

 2023年8月、核融合炉向けに変形しにくく優れた導体性能を持つ高温超電導大電流導体「STARS(スターズ)」を開発した。高温超電導材を積層して機械的強度や導体特性を高め、1.8万Aの通電と繰返し通電試験で安定稼働を確認し、低温超電導体の約2倍の電流密度80A/mm2を達成した。
 核融合炉の安定稼働のほか、従来よりも強い磁場を発生できるため小型化にも有効である。

図8 ヘリカル型核融合実験装置LHDの外観とその断面モデル  出典:核融合科学研究所

大型レーザーによる慣性核融合炉(LFS)

 大阪大学では1976年に大阪大学レーザー核融合研究センターを発足、2017年にはレーザー科学研究所(Institute of Laser Engineering, Osaka University)と改組し、レーザー核融合科学研究部門において大型レーザー実験装置「激光XII号」を運用している。

 激光XII号は、球対称に配置されたレーザービーム12本で燃料球を直接照射するチャンバー室Iと、12本を1本化して一方向から燃料球を直接照射するチャンバー室IIを有し、1億℃を超える高温プラズマの生成や、レーザー爆縮による固体密度の600倍を超える高密度圧縮などの成果をあげている。

 高強度レーザーで燃料球を精密に爆縮させて中心部に高温高密度状態を作る中心点火方式では、爆縮が精密さを欠くと核融合反応が起きない。そのため、一度爆縮された燃料球が慣性で静止している極短時間に超高強度・超短パルスレーザーを照射する高速点火方式の検討が進められた。

 2018年9月、大阪大学は、広島大学、米国ネバダ大学、レーザー技術総合研究所、自然科学研究機構核融合科学研究所、光産業創成大学院大学と国際共同研究チームを結成し、激光XII号およびLFEXレーザー(ピーク出力:2PW)に強磁場を導入し、磁化高速点火方式の原理を実証した。   
 高速点火方式はナノ秒短パルスレーザーで爆縮させた直後に、ピコ秒超短パルスレーザーで外から瞬間的に加熱することで点火させるもので、これに1kT(一般的な磁石の1000倍の強さ)という強磁場を印加することでプラズマ加熱の効率化を進め、2000万℃、200億気圧を実現した。 

 2022年11月、ローレンス・リバモア国立研究所、マサチューセッツ工科大学、英国インペリアル・カレッジ・ロンドン、米国ロチェスター大学及び同大レーザーエネルギー学研究所、大阪大学レーザー科学研究所で構成された共同研究チームは、磁場支援型レーザー核融合の実証に成功した。
 ローレンスリバモア国立研究所の国立点火施設(NIF:National Ignition Facility)を使い、レーザー核融合プラズマに外部から強い磁場を印加することで、核融合プラズマの温度が40%上昇し、核融合反応によって発生する中性子の数が3倍上昇することが確認された。

大阪大学レーザー科学研究所とローレンスリバモア国立研究所のレーザー核融合の違い:
■大阪大学レーザー科学研究所は、高速点火方式によるレーザー核融合を採用している。ナノ(10億分の1)秒台の短パルスの複数本のレーザービームを同時照射して燃料球を高密度に圧縮した後、ピコ(1兆分の1)秒台の超短パルスの高強度レーザーを打ち込み核融合反応に点火。
 高速点火方式は、ローレンスリバモア国立研究所が採用している中心点火方式に比べて、比較的小出力のレーザーで効率よく核融合反応を起こせる。
■大阪大学レーザー科学研究所では、燃料球に直接レーザーを照射する直接照射方式を採用している。一方、ローレンスリバモア国立研究所では、燃料球をhohlraum(ホーラム)と呼ばれる高Zで作られた金属筒に入れ、そのホーラム内側にレーザーを照射し、燃料球はホーラムから出るX線によって照射される間接照射方式を主に採用している。

 レーザー核融合の大きな課題は、核融合反応の持続にある。レーザー照射により燃料が一瞬にして核融合反応を生じてエネルギーを生み出すが、エネルギー発生を持続するには毎秒10回前後、次々に点火を繰り返す必要がある
 2022年12月に始まるローレンスリバモア国立研究所の成果も、核融合反応は1度のレーザー照射によるもので、今後実用化のためには核融合反応を持続的なものにする必要がある。

 現在、高繰り返しハイパワーレーザーシステムの開発計画であるジェイ・エポック(J-EPoCH:Japan Establishment for a Power-laser Community Harvest)計画が進行中で、レーザー科学研究所では毎秒100回の高繰り返し動作が可能な次世代パワーレーザーの開発に取り組んでいる。

図6 レーザ核融合実験装置の激光Ⅻ号レーザー室とチャンバー室Ⅰ(球対称照射系)

コメント

タイトルとURLをコピーしました