エネルギー

エネルギー

火力発電所の仕組み(Ⅳ)

国内の主流は、ガスタービン・コンバインドサイクル(GTCC )発電方式である。貯留タンクから供給された液化天然ガス(LNG)を燃焼器で燃焼させてガスタービンを駆動し、高温の排ガスを排熱回収ボイラに導き、得られた蒸気で蒸気タービンを回転させてダブルで高効率発電を行う。
エネルギー

火力発電所の仕組み(Ⅲ)

超臨界圧から超々臨界圧へと進められた火力発電プラントの高効率化は、蒸気条件の高温・高圧化の歴史といっても過言ではない。これを実現できたのは使用温度域に応じたボイラ材料、蒸気タービン材料の開発が大きな役割を果たしている。
エネルギー

火力発電所の仕組み(Ⅱ)

石炭船から陸揚げされた石炭は、貯炭場を経て微粉炭機で粉砕される。ボイラ内で微粉炭を燃焼することで蒸気を発生させて蒸気タービンを回転させ、タービン発電機で発電する。蒸気タービンを駆動させた蒸気は復水器で冷却されて水に戻し、再びボイラに送り蒸気に変換され、これが繰り返される。
エネルギー

火力発電所の仕組み(Ⅰ)

2020年度の国内年間発電電力量は、水力を含む再生可能エネルギー20%、原子力発電所4%、火力発電所76%(LNG39%、石炭31%、石油等6%)である。欧米の先進国を中心として世界的に進む「脱石炭火力発電所」の動きに、日本は大きく遅れているのが現状である。
火力発電

COP27で「化石賞」の受賞とは

2022年11月9日、エジプトにおいて開催された第27回国連気候変動枠組条約締約国会議(COP27)で、日本がトップバッターとして「本日の化石賞」を受賞した。国連の正式なイベントではないが、日本のイメージを大きく損なうものであることに間違いはない。この「本日の化石賞」とは、国際的な環境NGOネットワーク「気候行動ネットワーク(CAN)」が、気候変動対策に対して最も後ろ向きの国へ、皮肉を込めて贈る不名誉な賞である。日本はCOP25(スペイン)、COP26(英国)に続いて3年連続の受賞となる。
火力発電

火力発電に使われる燃料(Ⅳ)

電力会社を中心にアンモニア(NH3)は石炭との混焼実証が始まっている。NH3は水素と比較して専焼や混焼時の発電価格を抑えることが可能であるが、国内大手電力会社の全ての石炭火力発電で20%混焼を行うと、約2,000万トン/年のNH3が必要でサプライチェーンの構築が大きな課題となっている。
火力発電

火力発電に使われる燃料(Ⅲ)

水素の供給コストは氏0℃、1気圧の標準状態に換算して100円/Nm3程度と、液化天然ガス(LNG)の10倍近い。政府は水素とアンモニアを国内外で製造、海外から運搬する供給企業に対し、期間限定で差額の一部を補助する制度を検討している。それでも経済性の見通しは立たないのが現状である。
火力発電

火力発電に使われる燃料(Ⅱ)

バイオマスは生物起源による有機物資源である。これを燃焼(混焼あるいは専焼)させることで、従来の化石燃料と同様に火力発電システムを用いて電力を得ることができる。「カーボンニュートラル」が成立するため、地球温暖化対策に有効な再生可能エネルギーと位置付けられている。
火力発電

火力発電に使われる燃料(Ⅰ)

2020年の日本のエネルギー自給率は11.2%で、再生可能エネルギーと原子力発電による。残りは、石油、石炭、天然ガスなどCO2排出源となる化石燃料で、その多くは輸入に頼っている。現在、ウクライナ危機による急激な価格上昇に直面しており、今後、脱炭素化戦略の見直しが必要となる。
原子力

電力ひっ迫と原発の再稼働について(Ⅴ)

国内の電力安定供給に向けた目先の対策は、新たな発電設備導入の必要がないデマンド・レスポンス(DR)の導入である。将来的には仮想発電所(VPP)の構築である。また、再生可能エネルギーの拡大状況とリンクして、政府が火力発電の休廃止を制御することも重要な対策である。