航空機

航空機

航空機の未来予測

抜本的なゼロエミッション航空機の実現に向け、蓄電池性能の観点から小型機はピュアーエレクトリック航空機に向かい、主力となる中大型機は燃料電池航空機、あるいは水素タービン航空機を実現する必要がある。開発リスクの高い大型機では航空燃料のSAF導入が進むと考えられる。
航空機

空飛ぶクルマ(Ⅳ)

「空飛ぶクルマ」に関しては、世界中に様々な情報が発信されている。日本も遅れずにキャッチアップする必要がある。環境や安全基準の作成、パイロットの技能証明、自動運転などの運航方法の確立など、法規制が十分ではなく、新規産業育成を促すためにも諸環境の整備を急ぐ必要がある。
航空機

空飛ぶクルマ(Ⅲ)

回転翼機ではドローン型の場合、All electric VTOLが主流で開発が進められている。しかし、現在の蓄電池性能では大型化と飛行距離に制限が生じるため、燃料電池+蓄電池システム搭載へと進化が始まっている。ヘリコプター型の場合、飛行速度を上げるためにメインローターと左右両舷に主翼やプロペラを持つ複合型ヘリコプターが開発されたが、現在は中断されている。
航空機

空飛ぶクルマ(Ⅱ)

固定翼機は、走行時に翼を折りたたみ飛行時に翼を展開するSTOLから、フラップに推力偏向電動ダクト(DEVT)ファンを並べたeVTOLへと進化している。固定翼/回転翼複合機では、垂直離着陸用と前方への推進用に2種類のプロペラを使い分けるeVTOLと、離着陸時には上を向き巡航時には進行方向を向く推力偏向型のeVTOLが開発されている。現状の蓄電池性能を考慮すると、いずれも大型化と飛行距離には問題があるため、ガスタービン発電と蓄電池のハイブリッドエンジン搭載が有望視されている。
航空機

空飛ぶクルマ(Ⅰ)

世界中で様々な「空飛ぶクルマ」が開発されているが、現時点で、空飛ぶクルマに明確な定義はない。無人で遠隔操作や自動制御によって飛行できる「ドローン」を乗車可能にしたものや、EVベースに翼・プロペラや自動制御システムを備えたものなどが開発されている。 
航空機

電動航空機の開発動向(Ⅷ)

中大型航空機を対象にして、航空機メーカーはSAFに軸足を置くボーイングと、水素燃焼タービン航空機開発に一歩踏みだしたエアバスとに2極化している。一方で、エンジンメーカーはGE、P&W、ロールス・ロイスのいずれもが、現在の航空機エンジンの水素燃料化を長期的に進めていく戦略である。そのため、短期的には需要を満たすSAFのサプライチェーンの構築、長期的にはグリーン水素のサプライチェーンの構築が重要となる。
航空機

電動航空機の開発動向(Ⅶ)

ジェットエンジンで水素を燃やすための燃焼器の改良、軽量・コンパクトな極低温液体水素貯蔵タンクの開発、大幅な機体の軽量化など開発課題は山積であり、航空機用水素燃焼タービンは実用化されていないのが現状である。JAXAは水素燃焼タービンをベースに、液体水素で冷却する超電導モーター・発電機による水素電動ジェットエンジンの設計検討を、2030年を目指して実施している。
航空機

電動航空機の開発動向(Ⅵ)

航空機メーカーなどにより、小型機を対象に推力を含む主電源と位置付けた燃料電池航空機の飛行試験が、既存のレシプロエンジンをPEFC+電動モーターに置き換えることにより実施されている。一方で、中大型機を対象に機内分散電源や非常用電源のハイブリッドシステム(SOFC or PEFC+ガスタービン)への置き換えが検討されているが、最近では燃料電池プロペラ推進システムの開発が始まっている。
航空機

電動航空機の開発動向(Ⅴ)

燃料電池の航空機への適用に関しては、2005 年頃からボーイングとエアバスがフィージビリティー・スタディーを進めている。全電動化航空機(AEA)構想の一環で、油圧・空気圧による駆動も電気系統で統一して飛行の推力以外は全て電動化することで、燃費向上、低コスト化を実現するのが狙いである。
航空機

電動航空機の開発動向(Ⅳ)

2017年11月には、エアバス、ロールスロイス、シーメンスの3社が、シリーズ方式のハイブリッド電気推進システム実証機「E-Fan X」の開発でパートナーシップを締結したが、経済的な視点と技術的な成熟段階を見据えた結果、2020年4月、「E-Fan X」の事業化計画は破棄されている。